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INTRODUCTION 

Effect of LOCA Holes on PWR Core Coolability 
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Introduction: Background 

GSI-191 posed by US NRC  

Concerned with ECCS performance during a LOCA 

When the break occurs, reactor/pipe insulation 

can become fibrous debris 

Debris generated could impair pump performance 

Debris could also bypass sump strainers and enter 

the primary system  

ECCS Process during a break 

Coolant is drawn from the RWST until empty 

Then pumps draw water from the containment sump 

www.pciesg.com 
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When sump switchover occurs, debris could be 

drawn into the primary and accumulate at the 

core inlet 

Assumed full and instantaneous blockage of the 

core at sump switchover  

In this scenario, coolant can only reach the core 

through the core bypass  

Initial simulations indicated core failure 

Introduction: Study Motivation 
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INPUT MODEL 

DESCRIPTION 

Effect of LOCA Holes on PWR Core Coolability 
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1D Components, 1D Core 

Four Independent Loops 

Three Heat Structures 

Average Channel 

Hot Channel 

Hottest Rod 

ECCS (3 trains connected to loops 2, 3, & 4) 

Model without LOCA  Holes 

DEG Break Model 

RELAP5-3D Model 
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Models with LOCA Holes 

Pressure Relief (LOCA) Holes: A ring of holes 

through Baffle Plate connecting Core and Core 

Bypass  

1-3 Levels 

1D Model means we take a “lumping” approach 

All holes at each level combined into 1 hole 

Hydraulic Diameter of 1 hole  

Flow Area of ALL holes (at each level) 

Friction losses (k-losses) modeled as flow 

through an orifice 
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Blockage Simulation 

Full and instantaneous blockage of core inlet at 

sump switchover 

Simulated by increasing the forward k-loss at 

core inlet to prevent flow (to 1.0E6) 

Bypass was left free (unblocked) 
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SIMULATION RESULTS 

Effect of LOCA Holes on PWR Core Coolability 
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Simulation Approach 

8 total simulations 

Parameters of Interest: 

Peak Cladding Temperature (1478 K limit) 

Core Collapsed Liquid Level 

Bypass Flow 
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Simulation Approach 

(-300 to 0 seconds) 

(0 to 1470 seconds) 

(1470 to 5000+ seconds) 
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Results without LOCA Holes 
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Results without LOCA Holes 

CL Injection 
CL Break 

Blockage Bypass 

Hydrostatic 
Head 

[8] 
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Results with LOCA Holes 
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Results with LOCA Holes 
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Results with LOCA Holes 
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Results with LOCA Holes 
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Results with LOCA Holes 
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CONCLUSIONS 

Effect of LOCA Holes on PWR Core Coolability 
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Conclusions 

Performed RELAP5-3D simulations  

Cold-leg DEG LOCA with full core blockage  

Three simulations included LOCA holes, one did not  

Determine LOCA hole effect on core flow and 

coolability by examining: 

Peak Cladding Temperature 

Core Collapsed Liquid Level 

Core Bypass Integral Flow 
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Conclusions 

No LOCA Holes 

Substantially less coolant supplied to core  

Cladding temperature increased to failure  

With LOCA Holes 

More coolant flowed into the bypass (Bypass Integral 

Flow plot)  

More coolant reached the core itself (Collapse Liquid 

Level plot) 

Core Coolability was improved and no failure 

occurred (Peak Cladding Temperature plots) 
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